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ABSTRACT:Several problems of an article by 

Gursky are pointed out in this paper. A lemma and 

aninference are modified, and two noteson locally 

conformally flat four- and six-manifoldsare given. 
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I. INTRODUCTION 
In [1], Gursky gave various results. One of the 

most important results was that compact, boundless, 

conformally flat four or six-manifold with positive 

scalar curvature and positive Euler representation 

must be conformally equivalent to a sphere or 

projective space. In the proof of this result, the author 

gave another proof of Yamabe problem without using 

the positive mass theorem. This article also included: 

on a compact, boundless,four -manifold with positive 

scalar curvature and positive Euler representation, 

there was a 
2L -pinchingphenomenon with respect to 

Weyl curvature. In addition, the improvement of 

Bourguignon's vanishing theorem was given 

For the convenience of narration, we will firstly 

explain some marks.Let ( , )nM g be a compact, 

boundless ( 3)n n 
-dimensionalRiemannianmanifold.Let 

4
2[ ] { :ng u g C C 0}u  be the conformal class 

of g [2 3]
. 

If
4

2ng u g , there is a conformal scalar curvature 

equation 
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represent conformal Laplacian operators.Equivalently, 

we can see the following functional
1,2 ( ) [ ]u W M Q u   
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The critical point of this functional satisfies Euler 

equation (1), and gR  const
[4 5]

.From Sobolev 

embedding
1,2 NW LÌ , we know that [ ]Q u has a 

lower bound, and note that its infimum is Q [6]
.For

P N , we can define “sub critical”functional 
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For every P , there is a positive function

( )Pu C M such that 

1,2

0

[ ] inf [ ].P P P P
u W
u

Q u Q Q u



   

If Pu is normalized such that 1P P
u  , then Pu

satisfies the Euler-Lagrange equation 
1p

g P P PL u Q u   .                            (2) 

Take a little column kP N , and note
kk Pu u ,

kk PQ Q . Let kR , k and k represent the scalar 

curvature, Laplacian operator and covariant 

differential with respect to metric
4

2n

k kg u g , 

respectively. 

 

II. PROOF OF TWO NOTES 
In this section, we give two notes on locally 

conformally flat four- and six-manifolds. 

Note1.In [1], in order to prove the conclusion of 

six-manifold in Theorem A, the author gaveLemma 

1.5, that is, kR satisfied 

  212 2 1( ) ( ) .k

k

P NN

k k n k k n k g k k k k kN P
R C N P R C N P R u R R R
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The author mistakenly wrote the molecule

1kP N  in the third item on the right of (3) as 

1kP N  .Next we give the proof. 

Proof:In the local coordination, we note

: ( ) , : ( )ij ij

ij k ij kg g g g  .It is known from (1.5) of 

[1] 
1 0.kP N

k n k kR C Q u
   

The left side of (3) is 
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The right side of (3) is 
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The first equal sign in the above formula is due to 
1

2 n g kN

g k k

k

C u
R R u

u






 
 

and 
2 22( 1)2 2 2( ) .kP N

k k n k k k k kR C Q P N u u
      

The last equal sign in the above formula is due to 
1
.kP

g k k kL u Q u


   

To sum up, the equation (3) holds.  □ 

In this way, we know that in the proof of Theorem A in 

[1], the derivation after lemma 1.5 is incorrect. 

Note2.The inference 2.4 of [1] describes that, let

( , )nM g be a compact, boundlesssix-manifold, and

0gR  , if  

2
232 ,g g

M
W dV   (4) 

then there must be ( ) 2M  . Where gR represents 

the quantitative curvature of metric g , W represents 

the Wely curvature of manifold M , and ( )M

represents the Euler representation of manifold M . 

Here we need to explain that in order to get the result 

of the above inference, we must make some 

modifications to condition (4), that is, change it to 
2

232 ,g g
M

W dV    (5) 

Otherwise, the conclusion ( ) 2M  in the inference 

cannot be obtained. Next we give the proof. 

Proof:According to corollary2.3 of [1], for a given

0  , there is a metric
2h u g ( u is a positive 

function) that satisfies 
2 2

22 32 ( ( ) 2) ,h h h h
M M

E dV M W dV      
(6) 

where hE represents the traceless Ricci curvature of 

metric h . 

Substitute (5) into (6) to get 

2
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From the arbitrariness of 0   

2
( ) 2 3.

32
M





    

we have 

( ) 2.M  □ 

From the above proof, we can see that when the 

condition is (4), the conclusion is ( ) 3M  . 
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